
Fourth-order analogies to  the Painlevé equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 4617

(http://iopscience.iop.org/0305-4470/35/21/310)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/21
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 4617–4632 PII: S0305-4470(02)33994-5

Fourth-order analogies to the Painlevé equations
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Abstract
Using the compatibility condition for the Painlevé equations, several new
fourth-order ordinary differential equations (ODEs) that are analogies of the
Painlevé equations are found. The isomonodromic linear problems for these
equations are given. Special solutions of the fourth-order ODEs found are
discussed. The Painlevé test is applied to investigate several fourth-order ODEs.

PACS numbers: 02.30.Hq, 02.30.Ik, 02.30.Tb

1. Introduction

In recent years there has been a renewal of interest in the theory of the Painlevé equations [1].
This interest stemmed from the observation by Ablowitz and Segur [2–4] that reductions of a
nonlinear partial differential equation (PDE) of the soliton type give rise to ordinary differential
equations (ODEs) whose movable singularities are only poles. Using this idea, a number of
the Painlevé equations were obtained as reductions of soliton equations.

The Painlevé equations were first found by Painlevé and his collaborators more than a
century ago when Painlevé and his school began an investigation of the nonlinear second-
order ODEs class. They wanted to solve two different problems: to classify second-order
differential equations of a certain form on the basis of their possible singularities of solutions,
and to identify second-order differential equations which define new functions. The latter
problem was formulated by Fuchs and Poincaré in 1884. However, Fuchs and Poincaré did
not find any new functions because they considered the first-order ODE class.

Painlevé and his school found 50 canonical classes of equations whose solutions have
no movable critical points. Furthermore, they also showed that among 50 equations there
are exactly six second-order ODEs that define new functions. At the present time these new
functions are called Painlevé transcendents; and equations with general solutions in the form
of these transcendents are called Painlevé equations. These six Painlevé equations were first
discovered from strictly mathematical investigations but these equations have recently appeared
in several physical applications [5].
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The results of Painlevé and his school led to the following problems: to classify other types
of nonlinear differential equations and to find higher-order differential equations that define
new transcendental functions with respect to constants of integration. Recently an attempt has
been made to find new functions, other than the Painlevé transcendents, again determined by
nonlinear ODEs. With this aim several hierarchies of ODEs were introduced using hierarchies
of nonlinear PDEs that are solvable by the inverse scattering transform [6–10].

The aim of this paper is to present several new fourth-order ODEs that are analogies to
the Painlevé equations. These equations will be found using the compatibility condition for
the Painlevé equations. The isomonodromic linear problems for these equations will also be
given. The equations found have special solutions in the form of transcendents and we hope
the general solutions of these equations are also transcendents.

The outline of this paper is as follows. The method applied to find higher-order ODEs
that are analogies of Painlevé equations is discussed in section 2. Fourth-order ODEs with
linear potential are given in section 3. Equations corresponding to the quadratic potential are
presented in section 4. Special solutions of these equations are also discussed. The application
of the Painlevé test for studying equations with potentials (2.3) and (2.4) is presented in
section 5.

2. Method applied

Garnier [11] found that five out of six Painlevé equations can be presented as isomonodromic
linear problems. These problems can be used for solving the Painlevé equations by the inverse
monodromy transform [12, 13]. The compatibility condition of the isomonodromic linear
problem can be written in general form as the following equation [14, 15]:

ωUλ = 4UAx + 2UxA − Axxx (2.1)

where U ≡ U(x, λ) is a potential, ω ≡ ω(λ) is a dependence on λ and A ≡ A(x, λ) is a
function of x and λ.

It is known that five of six Painlevé equations can be obtained from equation (2.1) if we
look for A(x, λ) in the form

A(x, λ) = a1(x) + a0(x)λ. (2.2)

Assuming U(x, λ) in the form

U(x, λ) = P(x) − λ (2.3)

we have the first Painlevé equation from equation (2.1) at ω(λ) = 1. In the case of ω(λ) = λ

we get P34 and we have the special case of the third Painlevé equation at ω(λ) = λ2.
Assuming the potential U(x, λ) in the form

U(x, λ) = P(x) − 2λy(x) + λ2 (2.4)

one can find the second Painlevé equation at ω(x) = 1, the fourth Painlevé equation at
ω(λ) = λ, the third Painlevé equation in the case ω(λ) = λ2 and the fifth Painlevé equation at
ω(λ) = λ(λ − λ0).

Let us remark that equation (2.1) is equivalent to two isomonodromic linear problems.
One can see that the compatibility condition in the form

(�xx)λ = (�λ)xx (2.5)

for the system of equations

�xx = (P (x) − λ)� ω(λ)�λ = 2A(x, λ)�x − Ax(x, λ)� (2.6)
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leads to equation (2.1) if we take the linear potential (2.3) in the last equation.
On the other hand, the compatibility condition (2.5) of the isomonodromic linear problem

�xx = 2(λ − y)�x + Q(x)� ω(λ)�λ = C(x, λ)�x + D(x, λ)� (2.7)

can also be presented as equation (2.1) at the quadratic potential (2.4) if we assume

Q(x) = P(x) − yx − y2, C(x, λ) = 2A(x, λ) (2.8)

and

D(x, λ) = 2A(x, λ)(y − λ) + ω(λ)x − Ax(x, λ). (2.9)

One can look for higher-order ODEs that are analogies to the Painlevé equations taking into
account the isomonodromic linear problems (2.6) and (2.7) [16]. However, we can look for the
higher-order analogies to the Painlevé equations if we use equation (2.1), potentials (2.3), (2.4)
and A(x, λ) in the form

A(x, λ) =
n∑

i=0

ai(x)λn−i . (2.10)

In this paper we are going to apply the formula (2.10) at n = 2 which allows one to find
several new fourth-order ODEs with the general solutions in the form of the transcendental
functions with respect to constants of integration.

3. Fourth-order equations with potential (2.3)

Let us find fourth-order ODEs with potential (2.3). Assuming n = 2 in equation (2.10), we
have

A(x, λ) = a2(x) + a1(x)λ + a0(x)λ2. (3.1)

3.1. Case

ω(λ) = 2ω = const. Substituting equations (2.3) and (3.1) into (2.1) and equating expressions
at different λ to zero we have

a0(x) = c0 (3.2)

a1(x) = 1
2c0P(x) − 1

4c1 (3.3)

a2(x) = − 1
8c1P(x) − 1

8c0Pxx + 3
8c0P

2 − 1
4c2 (3.4)

a2,xxx − 2Pxa2 − 4Pa2,x − 2ω = 0. (3.5)

Here c0, c1, c2 and later c3 and c4 are constants of integration. Substituting equation (3.4)
into (3.5) after integration we obtain

Pxxxx − 10PPxx − 5P 2
x + 10P 3 +

c1

c0
Pxx − 3c1

c0
P 2 + 16

ωx

c0
− 4c2

c0
P + c3 = 0. (3.6)

Let us denote P(x) ≡ y(x) and ω = −αc0/16, c1 = βc0, c2 = µc0/4, c3 = δ. Then
equation (3.6) can be presented in the form

yxxxx − 10yyxx − 5y2
x + 10y3 + βyxx − 3βy2 − αx = 0. (3.7)

We have taken µ = 0 and δ = 0 in equation (3.7) taking into account the change of
variables x and y. Equation (3.7) is the generalization of the second member of the first
Painlevé hierarchy that was found in [7]. Equation (3.7) at β = 0 was studied intensively
in [17–21]. This equation passes the Painlevé test [17]. The general solution of this equation
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is an essentially transcendental function with respect to constants of integration [20,21]. There
are the Bäcklund transformations for solutions of this equation [19]. At β �= 0 equation (3.10)
was found in a recent work [22].

The isomonodromic linear problem corresponding to equation (3.7) can be presented in
the form [10, 17]

�xx = (y − λ)� 8α�λ = 2A1(x, λ)�x − A1,x� (3.8)

where A1(x, λ) is determined by the formula

A1(x, λ) = yxx − 3y2 + βy + 2(β − 2y)λ − 8λ2. (3.9)

The system of equations (3.8) can be used to solve the Cauchy problem for equation (3.7)
by the inverse monodromy transform.

3.2. Case

ω(λ) = 2ωλ. Substituting equations (2.3) and (3.1) into (2.1), we get a0(x) and a1(x) in the
form (3.2) and (3.3). As a result of substituting these expressions into other equations we
obtain the following system of equations:

a2(x) + 1
8c1P + 1

8c0Pxx − 1
2ωx − 3

8c0P
2 + c2 = 0 (3.10)

a2a2,xx − 1
2a2

2,x − 2Pa2
2 + c3 = 0. (3.11)

Denoting parameters ω = αc0/4, c1 = βc0, c3 = δ, c0 = 8/ν and assuming c2 = 0
(one can change variable x), P(x) ≡ y(x), a2(x) ≡ u(x), we have the following system of
equations from equations (3.10) and (3.11):

yxx − 3y2 + βy − αx + νu = 0 (3.12)

uuxx − 1
2u2

x − 2yu2 + δ = 0. (3.13)

This system of equations can be considered as the Bäcklund transformations between two
new fourth-order ODEs for y(x) and u(x). The equation for u(x) can be written in the form

uxxxx − 3
uxuxxx

u
− 7

2

u2
xx

u
+

17

2

u2
xuxx

u2
− 27

8

u4
x

u3
+

(
β − 5δ

u2

)
uxx

− 1

2

(
β

u
− 15δ

u3

)
u2

x + 2νu2 − 2αxu +
βδ

u
− 3δ2

2u3
= 0. (3.14)

The equation for y(x) takes the form

(βy − αx − 3y2 + yxx)yxxxx − 1
2y2

xxx + (α − βyx + 6yyx)yxxx

+ (β − 8y)y2
xx + (β2y − 13βy2 − 6y2

x + 30y3 + 10αxy − αxβ)yxx

+ (6αx − 1
2β2)y2

x + α(β − 6y)yx − 18y5 + 12βy4

− 2(6αx + β2)y3 + 4βαxy2 − 2α2x2y − 1
2α2 + δν2 = 0. (3.15)

From the system of equations (3.12) and (3.13) we can see that equation (3.15) has the
special solutions in the form of the general solution of the first Painlevé equation. Therefore,
the general solutions of equations (3.14) and (3.15) are also transcendental functions with
respect to constants of integration.

Note that equation (3.14) can be written in another form (maybe more convenient) if we
use the variable u ≡ exp(v(x)).

In this case we have the fourth-order ODE of the form
d2

dx2
(vxx − 1

2v2
x) + (vxx − 1

2v2
x)

2 + β(vxx + 1
2v2

x)

− 5δ(vxx − 1
2v2

x + 1
2β)e−2v + 2νev − 1

2δ2e−4v − 2αx = 0. (3.16)
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Equation (3.16) at β = δ = ν = 0 has the special solution that is expressed via the general
solution of the first Painlevé equation in the form

Sxx + S2 − 2αx = 0 (3.17)

where

S = vxx − 1
2v2

x. (3.18)

Assuming v = − ln ϕ the last equation can be written as the linear equation in the form

ϕxx + Sϕ = 0. (3.19)

We feel we need to study equations (3.14)–(3.16) in more detail in future work.
The isomonodromic linear problem for equation (3.14) can be obtained on the basis of the

system of equations (2.6). It takes the form

�xx = (P2 − λ)� 2αλ�λ = 2A2�x − A2,x� (3.20)

where P2(x) and A2(x, λ) are expressed by the following formulae:

P2(x) = uxx

2u
− u2

x

4u2
+

δ

2u2
(3.21)

A2(x, λ) = 1

2
νu +

(
uxx

u
− u2

x

2u2
+

δ

u2
− β

)
λ + 4λ2. (3.22)

The system of equations (3.20) is the key to solving the Cauchy problem for
equation (3.14).

3.3. Case

ω(λ) = 2ωλ2. Using equations (2.3), (3.1) and (2.1) again we have

a0 = c0 (3.23)

a1 = 1
2c0P + 1

2ωx − 1
4c1 (3.24)

4a2,x − 3c0PPx − 2Pω + 1
2c0Pxxx − ωxPx + 1

2c1Px = 0 (3.25)

a2,xxx − 2Pxa2 − 4Pa2,x = 0. (3.26)

The last equation can be integrated. It takes the form

a2a2,xx − 1
2a2

2,x − 2Pa2
2 + c3 = 0. (3.27)

From equation (3.27) one can obtain P(x). Substituting this dependence into
equation (3.25) we can integrate this equation. If we denote a2(x) ≡ y(x), ω = αc0, c3 = δ,
c2 = µ, c1 = βc0, c0 = 8/ν (we take the parameter β as zero because one can change variable
x)we will obtain the following fourth-order ODE:

yxxxx − 4yxyxxx

y
− 3y2

xx

y
+

21

2

y2
xyxx

y2
− 9

2

y4
x

y3
−

(
2αx +

5δ

y2

)
yxx

+ 2

(
αx

y
+

5δ

y3

)
y2

x − 2αyx + νy2 + µ − 4αδx

y
− 2δ2

y3
= 0. (3.28)

This equation can be presented in a more convenient form if we use variableu ≡ exp(v(x)).

d

dx

(
vxxx − 1

2
v3

x

)
− 2α

d

dx
(xvx) − 5δ

(
vxx − v2

x +
4

5
αx

)
e−2v + νev + µe−v − 2δ2e−4v = 0.

(3.29)
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At δ = µ = ν = 0 equation (3.29) takes the form of the second Painlevé equation if we
use at w = vx . This form is

wxx − 1
2w3 − 2αwx + c5 = 0. (3.30)

Equation (3.29) is a generalization of the equation which was found in a recent work [21].
Equation (3.29) was shown to have the special case of the third Painlevé equation if we do not
take into account the leading members of this equation. The general solution of equation (3.29)
is a transcendental function with respect to constants of integration. This one passes the
Painlevé test.

The isomonodromic linear problem for equation (3.28) takes the form

�xx = (P3 − λ)� 8αλ2�λ = 2A3�x − A3,x� (3.31)

where P3(x) and A3(x, λ) are expressed by the following formulae:

P3(x) = yxx

2y
− y2

x

4y2
+

δ

2y2
(3.32)

A3(x, λ) = 1

2
νy +

(
yxx

y
− y2

x

2y2
+

δ

y2
− β + 2αx

)
λ + 4λ2. (3.33)

The general solution of equation (2.19) can be found by the inverse monodromy transform.

3.4. Case

ω(λ) = 2ωλ3. Taking into account equations (2.3) and (3.1) we obtain from equation (2.1)

a0(x) = 1
2ωx + c0 (3.34)

4a1,x − ωxPx − 2c0Px − 2ωP = 0 (3.35)

a1,xxx + 4a2,x − 4Pa1,x − 2Pa1 = 0 (3.36)

a2a2,xx − 1
2a2

2,x + c3 − 2Pa2
2 = 0. (3.37)

From equations (3.35) and (3.36) one can find integrals. They take the form

c0a2,xx + a1a1,xx + 1
2ωxa2,xx − 1

2a2
1,x + 4a1a2

− 1
2ωa2,x + c1 − 2ωxa2P − 4c0a2P − 2a2

1P = 0 (3.38)

a2a1,xx + a1a2,xx + 2a2
2 − a1,xa2,x + c2 − 4a1a2P = 0. (3.39)

Substituting P(x) from equation (3.37) into (3.38), (3.39) and denoting a1(x) =
y(x), a2(x) = u(x), c0 = ν, ω = α, c1 = β, c2 = µ, c3 = δ, x ′ = x + 2ν/α, we find
the following system of equations:

2u3 + yxxu
2 + (µ − yuxx − yxux)u + yu2

x − 2δy = 0 (3.40)

4u3y + (yyxx − 1
2αxuxx − 1

2y2
x − 1

2αux + β)u2

+ ( 1
2αxu2

x − αxδ − y2uxx)u − δy2 + 1
2y2u2

x = 0. (3.41)

The Cauchy problem for the latter system of equations can also be solved by the inverse
monodromy transform.

4. Fourth-order equations with potential (2.4)

Now consider fourth-order ODEs that can be found from equation (2.1) taking into account
potential (2.4) and A(x, λ) in the form of equation (3.1).
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4.1. Case

ω(λ) = 2ω = const. Substitutions of equations (2.4) and (3.1) into (2.1) gives the following
set of equations:

a0 = c0 (4.1)

a1 = c0y + c1 (4.2)

a2 = 3
2c0y

2 − 1
2c0P + c1y + 1

4c2 (4.3)

c0yxx + 10c0y
3 + 6c1y

2 + c2y + c3 − 2c1P − 6c0yP + 4ωx = 0 (4.4)

a2,xxx − 4Pa2 − 4ωy − 2Pxa2 = 0. (4.5)

Here c0, c1, c2, c3 and later c4 are constants of integration again. Substituting P(x)

from equation (4.4) into equations (4.3), (4.5) and performing the change of variables and
parameters y(x) = u(x)

2 − c1
3c0

, ω = αc0
8 , c1 = β

2 c0, c2 = δc0, c3 = µc0, c4 = χ, αx ′ =
αx − βδ

3 + 2β3

27 + µ, β ′ = (β2 − 3δ)1/2 (the primes of variables are omitted) we obtain, after
integration, the following equation:

uxxxx − 2
uxuxxx

u
− 5u2uxx − 5

2
uu2

x − 3

2

u2
xx

u
+ 2

u2
xuxx

u2
− 2

αxuxx

u

+ 2
αxu2

x

u2
− 2

αux

u
+

5

2
u5 − β2u3 + 2αxu2 + χu − 1

2

α2x2

u
= 0. (4.6)

Using variable u = exp(v(x)) we can write equation (4.6) in the form

d2

dx2
(vxx + v2

x) − 1

2
(vxx + v2

x)
2 + χ +

5

2
e4v −

(
5vxx +

15

2
v2

x + β2

)
e2v

+ 2αxev − 2αe−v d

dx
(xvx) − 1

2
α2x2e−2v = 0. (4.7)

From equations (4.4) and (4.5) one can see there are special solutions of equations (4.6)
and (4.7) which are expressed by means of an elliptic Jacobi function.

Equation (4.6) is invariant under transformations y by −y and α by −α. This equation
also has the special solution at α = 0 and χ = β2/3. It takes the form

u(x) = β
√

3

3
tanh

(
β
√

3

3
x + ϕ0

)
(4.8)

where ϕ0 is a arbitrary constant.
Equation (4.6) can be written as the isomonodromic linear problem that corresponds to

the compatibility condition (2.5). For equation (4.6) this problem takes the form

6�xx = 2(3λ − 3u + β)�x − Q1(x)� 18α�λ = 6C1(x, λ)�x + D1(x, λ)� (4.9)

where Q1(x), C1(x, λ) and D1(x, λ) are expressed via the following formulae:

Q1(x) = 3ux +
β2

3
− u2 − 1

u
(uxx + αx) (4.10)

C1(x) = 2u2 + βu − β2

3
− 1

u
(uxx + αx) + (3u + 2β)λ + 3λ2 (4.11)

D1(x) = βu2 +
β3

3
+ 6αx + 6u3 − 3uxx − 3βux − 12uux − 2β2u

+
1

u
(3uxxx + 3α + βuxx + αβx) − 3ux

u2
(uxx + αx)

+

(
3u2 − β2 − 9ux +

3αx + 3uxx

u

)
λ − 9βλ2 − 9λ3. (4.12)
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The linear problem (4.9) can be used for solving equation (4.6) at all initial dates by the
inverse monodromy transform.

4.2. Case

ω(λ) = 2ωλ. Using the above-mentioned approach we have a0(x) = c0, a1(x) = c0y(x) + c1

and equations in the form

a2(x) = ωx +
3

2
c0y

2 − c0

2
P + c1y + c2 (4.13)

c0yxx − 6c0Py − 2c1P + 4ωyx + 10c0y
3 + 6c1y

2 + 4c2y + c3 = 0 (4.14)

a2a2,xx − 1
2a2

2,x − 2Pa2
2 + c4 = 0. (4.15)

One can find P(x) from equation (4.14). Substituting this expression into (4.13), (4.15)
and using parameters ω = αc0, c1 = βc0, c2 = c0ν, c3 = c0(µ − 2β3

27 ), c4 = δc2
0/16, we have

after the change of variables

x ′ = x +
ν

α
− 1

6β2α
, a2(x) = u(x)/4, y ′ = y − β

3
(4.16)

(primes are omitted) the system of equations

(3u − 8αx)y + yxx − 8y3 − 4βy2 − 4
3αxβ + µ = 0 (4.17)

(−yxx + 4βy2 − 10y3 − 4αxy + 4
3αxβ − µ)u2 + 3yuuxx + (3δ − 3

2u2
x)y = 0. (4.18)

This system can be considered as the second member of the fourth Painlevé hierarchy.
Recently this one was obtained as reduction of the Hirota–Satsuma system of equations in [23]
where the Bäcklund transformations and special solutions were found.

The isomonodromic linear problem corresponding to equations (4.17) and (4.18) takes
the form

9�xx = 3(3λ − 6y + 2β)�x − Q2(x)� 4αλ�λ = C2(x, λ)�x + D2(x, λ)� (4.19)

where

Q2(x) = β2 − 6y2 + 9yx − 6αx +
1

2y
(4αβx − 3µ − 3yxx) (4.20)

C2(x, λ) = u(x) + 2(y + 2
3β)λ + λ2 (4.21)

D2(x, λ) = uy − 1
2ux − 1

3βu − βλ2 − 1
2λ3 + (2αx − yx + 2y2 − 1

2u + 2
3βy − 4

9β2)λ. (4.22)

The isomonodromic linear problem (4.19) will be used for solving the Cauchy problem
of equations (4.17) and (4.18).

4.3. Case

ω(λ) = 2ωλ2. Substituting equations (3.1) and (2.4) into (2.1), we have a0(x) = c0 and the
following equations:

a1(x) = c0y + ωx + c1 (4.23)

a2(x) = ωyx + 3
2c0y

2 − 1
2c0P(x) + c1y + c2 (4.24)

−4c0Pyx − 4Pω + 8ya2,x + 4yxa2 + c0yxxx − 2c0Pxy − 2ωxPx − 2c1Px = 0 (4.25)

a2a2,xx − 1
2a2

2,x − 2Pa2
2 + c4 = 0. (4.26)

Substituting P(x) from equation (4.26) into (4.25) and multiplying the expression found
by a2(x) we obtain, after integration, some equations. We have used further parameters and
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variables: ω = αc0, c1 = βc0, c2 = µc0/4, c3 = νc2
0, c4 = δc2

0, a2(x) = c0u(x), y ′ = y −αx

(the prime of y ′ is omitted). As a result we have the following system of equations obtained
from equations (4.26) and (4.25):

u2yxx − u(yuxx + yxux) + y(u2
x − 2δ) + 4u3(y − αx) + νu = 0 (4.27)

uuxx − 1
2u2

x − 2u2(3y2 + α2x2) + u2(8αxy − µ) + 4u3 + δ = 0. (4.28)

The isomonodromic linear problem for the system of equations (4.27) and (4.28) can be
presented in the form

�xx = (λ − 2y + 2αx)�x − Q3(x)� 2αλ2�λ = C3(x, λ)�x + D3(x, λ)� (4.29)

where

Q3(x) = yx − α + (y − αx)2 − uxx

2u
+

1

4u2
(u2

x − 2δ) (4.30)

C3(x, λ) = 4u + 2yλ + λ2 (4.31)

D3(x, λ) = 4u(y − αx) − 2ux + (2y2 − 2u − yx − 2αxy)λ − 1
2λ3. (4.32)

The isomonodromic linear problems (4.29) can be used to solve the Cauchy problem for
equations (4.27), (4.28) by the inverse monodromy transform.

4.4. Case

ω(λ) = 2ωλ3. Substituting equations (2.4) and (3.1) into (2.1) we have

a0(x) = ωx + c0 (4.33)

a1(x) = ωxy + c0y − c1 (4.34)

12(ωx + c0)yyx − 2(ωx + c0)Px + 8ωy2 − 4ωP − 4c1yx − 4a2,x = 0 (4.35)

(ωx + c0)yxxx − 2y(ωx + c0)Px − 4(ωx + c0)Pyx

+ 3ωyxx + 8ya2,x − 4ωyP + 4a2yx + 2c1Px = 0 (4.36)

a2a2,xx − 1
2a2

2,x + c3 − 2Pa2
2 = 0. (4.37)

Using P(x) from equation (4.37) and denoting a2(x) = u(x), c0 = ν, ω = α, c1 =
β, c2 = µ, c3 = δ, c4 = 
, x ′ = x + ν/α, we obtain from equations (4.35) and (4.36) after
integration

αxu2yxx + (β − αxy)(uuxx − u2
x) − αu(y + xyx)ux

+ 2αyxu
2 + 4yu3 − 2αx
y + δu + 2β
 = 0 (4.38)

αx(αxy − β)u2yxx − ((αxy − β)2u + αxu2)uxx + (αxu + 1
2 (αxy − β)2)u2

x − 1
2α2x2y2

xu
2

+ α(αxy − 2β)u2yx − αu2ux − 2u4 + 8(αxy − β)yu3

+ (µ − 1
2α2y2)u2 − 2αx
u − α2x2
y2 + 2αxβ
y − 
β2 = 0. (4.39)

The Cauchy problem for the system of equations (4.38) and (4.39) are solved by the inverse
monodromy transform.

5. The Painlevé test for equations (3.14), (3.28), (4.6) and the system of
equations (4.27), (4.28)

The Painlevé test is known to be a powerful method for investigating the integrability of
differential equations [1,24]. This approach allows one to obtain the necessary conditions for
the absence of movable critical singularities in the general solution of a differential equation.
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The Cauchy problem for the equations presented above can be solved by the inverse monodromy
transform. We expect all these equations to pass the Painlevé test. However, the Painlevé test
also gives the representation of the general solution near a singular point and the formulae
found are useful to prove the local convergence of the general solution and other interesting
features of solution [25].

We are going to apply the Painlevé test to equations (3.14), (3.28), (4.6) and to the system
of equations (4.27) and (4.28) in this section using the perturbative Painlevé approach presented
in [1, 24]. The essence of this method can be presented in several ways. Let the ODE

E(y, yx, . . . , x) = 0 (5.1)

be given, where we keep in mind equations (3.14), (3.28), and (4.6). It is convenient to use the
perturbative method taking into account the following three steps.

In the first place we look for all possible families of solutions of equation (5.1) assuming

y = y0z
p, z = x − x0 (5.2)

where p is the order of the singularity, y0 is a coefficient and x0 is a movable singularity.
Substituting (5.2) into leading members of equation (5.1), we get several families of solutions
with values (p, y0). To continue the investigation of the equation we have to obtain all integer
values of p in this step.

To study the second necessary condition, we look for the Fuchs indices. At this step we
assume

y = y0z
p + yiz

p+j (5.3)

for every family of solutions and substitute expression (5.3) into the leading members of
equation (5.1) again. Equating expressions at yj in this step we obtain the integer Fuchs
indices jr , (r = 1, . . . , n), where n is the order of equation (5.1).

The third necessary condition corresponds to checking the existence of the Laurent series
for the general solution of equation (5.1). At this step, the general solution of equation (5.1)
is searched for in the form

y =
∞∑

k=0

εky(k). (5.4)

Equation (5.1), in this case, takes the form

E(z, y) =
∞∑

k=0

εkE(k) = 0. (5.5)

We have [1, 24] from equation (5.5)

k = 0 : E(0) ≡ E′(z, y(0)) = 0 (5.6)

k = 1 : E(1) ≡ E′(z, y(0))y(1) = 0 (5.7)

k � 2 : E(k) ≡ E′(z, y(0))y(k) + R(k)(z, y(0), . . . , y(k−1)) = 0 (5.8)

where E′ is the Gateaux derivative of equation (5.1) and R(k) stands for the contribution of
previous members of the expressions. The components of the solution y(k) are looked up in
terms of the Laurent series

y(k) =
∞∑

j=kρ

y
(k)
j zj−p (5.9)

where ρ is the least negative Fuchs index. Solution (5.4) must have n arbitrary constants to pass
the Painlevé test. The coefficients y

(k)
j are found after the substitution of representation (5.9)
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into equations (5.6)–(5.8) and equating the obtained coefficients E
(k)
j to zero. The absence

of movable critical points corresponds to n arbitrary constants in solution (5.4). Arbitrary
coefficients y(k)

r (r = 1, . . . , n); r � n; r is the Fuchs index) are introduced at k = 0 for r � 0
and k � 1 for r � −1.

Let us apply this algorithm to the investigation of equations (3.14), (3.28), (4.6) and the
system of equations (4.27), (4.28) in the Painlevé test.

5.1. Test for equation (3.14).

To study equation (3.14) let us write this one in the form

y3yxxxx − 3y2yxyxxx − 7

2
y2yxx +

17

2
yy2

xyxx − 27

8
y4

x + 2νy5 +

(
β − 5δ2

2y2

)
y3yxx

− 1

2

(
β − 15δ2

2y2

)
y2y2

x − 2αxy4 +
1

2
βδ2y2 − 3

8
δ4 = 0. (5.10)

Substituting (5.2) into the leading members of equation (5.10) we have five families of
solutions with values (p, y0) = (−4, 72/ν), (p, y0) = (1, δ), (p, y0) = (1, −δ), (p, y0) =
(1, δ/3) and (p, y0) = (1, −δ/3).

Substituting (5.3) where y0 = 72/ν and p = −4 into the leading members of
equation (5.10) again, we find equation for the Fuchs indices of the form

j 4 − 10j 3 − 5j 2 − 150j + 144 = 0. (5.11)

The solution of equation (5.11) takes the form j1 = −1, j2 = −3, j3 = 6 and j4 = 8.
Therefore the first family of solutions has two positive Fuchs indices and two negative ones.

Substituting (5.3) into the leading members of equation (5.10) for the second and third
families gives the equation

j 4 − 5j 3 + 5j 2 + 5j − 6 = 0. (5.12)

The solutions of equation (5.12) take the form j1 = −1, j2 = 1, j3 = 2 and j4 = 3.
In the case of the fourth and fifth families of solutions we obtain the equation for the Fuchs

indices in the form

j 4 − 5j 3 − 15j 2 + 45j − 54 = 0 (5.13)

that has solutions j1 = −1, j2 = −3, j3 = 3 and j4 = 6.
One can see that the first and second necessary conditions for passing the Painlevé test for

equation (5.10) are satisfied.
The solution y(0)corresponding to the first family takes the form

y(0) = 72

ν(x − x0)4
− 12β

5ν(x − x0)2
+

β2

350ν
+

18αx0

35ν

+
α

ν
(x − x0) + y6(x − x0)

2 − 2αβ

75ν
(x − x0)

3 + y8(x − x0)
4 + · · · . (5.14)

This solution has three arbitrary constants x0, y6 and y8. However, substituting

y(x) = y(0) + εy(1) + ε2y(2) + ε3y(3) (5.15)

into equation (5.10) and using (5.14) and (5.9) we find that y(x) has four arbitrary constants.
Solution y(0) corresponding to the second and third families can be written in the form

y(0) = ±δ(x − x0) + y1(x − x0)
2 + y2(x − x0)

3 + y3(x − x0)
4

+

(
±δαx0

15
− βy2

10
± 2y1y3

3δ
± 3y2

2

4δ
− y2

1y2

3δ2

)
(x − x0)

5 + · · · . (5.16)



4628 N A Kudryashov

The latter solutions already have four arbitrary constants x0, y1, y2 and y3 that
corresponding to the positive Fuchs indices and j1 = −1.

Solution y(0) for the fourth and fifth families of solutions have the form

y(0) = ±1

3
δ(x − x0) ∓ 1

45
βδ(x − x0)

3 + y3(x − x0)
4 ∓

(
δβ2

1260
+

δαx0

105

)
(x − x0)

5

+

(
βy3

30
+

νδ2

432
∓ αδ

144

)
(x − x0)

6 + y6(x − x0)
7 + · · · . (5.17)

Solution (5.17) has three arbitrary constants x0, y3 and y6; but using solutions (5.15), (5.17)
and (5.9) one can find from equations (5.6)–(5.8) that y(x) has four arbitrary constants for
1 � k � 4. We have found that equation (5.10) passes the Painlevé test.

5.2. Test for equation (3.28).

Now consider the application of the Painlevé test to equation (3.28). We will use this equation
in the form

y3yxxxx − 4y2yxyxxx +
21

2
yy2

xyxx − 3y2y2
xx − 9

2
y4

x −
(

2αx +
5δ2

2y2

)
y3yxx

+2y2

(
αx +

5δ2

2y2

)
y2

x − 2αyxy
3 + νy5 + µy3 − 2αδ2xy2 − 1

2
δ4 = 0. (5.18)

Substituting (5.2) into leading members of equation (5.18) we get five families of solutions
with values (p, y0) = (−4, 72/ν), (p, y0) = (1, δ), (p, y0) = (1, −δ), (p, y0) = (1, δ/3) and
(p, y0) = (1, −δ/3).

Substitution of (5.3) into leading members of equation (5.18) gives the equation, which
corresponds to the first family of solution, in the form

j 4 − 6j 3 − 13j 2 + 66j + 72 = 0. (5.19)

The Fuchs indices for the first family of solutions are found from equation (5.19). They
take the form j1 = −1, j2 = −3, j3 = 4, and j4 = 6.

For the second and third families of solution we have, after substitution of (5.3) into
leading members of equation (5.18), the following equation:

j 4 − 6j 3 + 7j 2 + 6j − 8 = 0. (5.20)

Solutions of equation (5.20) take the form j1 = −1, j2 = 1, j3 = 2, j4 = 4.
Substitution of (5.3) into the leading members of equation (5.18) for the fourth and fifth

families of solutions leads to equation (5.19). Therefore, the Fuchs indices coincide in this
case with the Fuchs indices of the first family of solutions.

Solution y(0) for the first family can be written in the form

y(0) = 72

ν(x − x0)4
+

24αx0

5ν(x − x0)2
+ a4 − 4α2x0

5ν
(x − x0) + a6(x − x0)

2

+

(
2

15
αa4 − 32α3x2

0

375ν

)
(x − x0)

3 + · · · . (5.21)

One can see from (5.21) that we have only three arbitrary constants. However, using the
solution in the form (5.15), we find four arbitrary constants in y(x) after solving equations
such as (5.6)–(5.8) at k � 4.
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The solution y(0) for the second and third families of solutions can be presented in the
form

y(0) = ±δ(x − x0) + b1(x − x0)
2 + b2(x − x0)

3

+

(
αb1x0

2
+

µ

8
± 5b1b2

4δ
∓ αδ

4

)
(x − x0)

4 + b4(x − x0)
5 + · · · . (5.22)

We can see from solution (5.22) that there are four arbitrary constants x0, b0, b2 and b4

in y(0).
We obtain y(0) for the fourth and fifth families of solutions in the form

y(0) = ± δ

3
(x − x0) ± 2αx0δ

45
(x − x0)

3 ± 1

12

(
αδ ∓ µ

6

)
(x − x0)

4 + w4(x − x0)
5

+

(
δ2ν

432
± δα2x0

270
+

αx0µ

1080

)
(x − x0)

6 + w6(x − x0)
7 + · · · . (5.23)

We have three arbitrary constants x0, w4 and w6 in solution (5.23). However, using
perturbations for y(x) in the form (5.15), we find four arbitrary constants for the fourth and
five families of solutions.

Taking into account all three steps for every family of solutions of equation (5.18) we
make the conclusion that equation (5.18) passes the Painlevé test.

5.3. Test for equation (4.6).

Let us examine equation (4.6) in the Painlevé test. We take this equation in the form

y2yxxxx + 2y2
xyxx − 3

2yy2
xx + 5

2y7 − 5y4yxx − 5
2y3y2

x − 2yyxyxxx

+ 2αx(y2
x − yyxx + y4) − 1

2α2x2y − 2αyxy − β2y5 + χy3 = 0. (5.24)

Substituting (5.2) into the leading members of equation (5.24) we find four families
of solutions with values (p, y0) = (−1, 1), (p, y0) = (−1, −1), (p, y0) = (−1, 2) and
(p, y0) = (−1, −2). The equation for the Fuchs indices of the first and second families
of solutions takes the form

j 4 − 8j 3 + 14j 2 + 8j − 15 = 0. (5.25)

This equation has solutions j1 = −1, j2 = 1, j3 = 3 and j4 = 5.
The equation for the Fuchs indices corresponding to the third and fourth families of

solutions can be presented in the form

j 4 − 8j 3 − j 2 + 68j + 60 = 0. (5.26)

This equation has solutions j1 = −1, j2 = −2, j3 = 5 and j4 = 6.
Solutions y(0) for the first and second families of solutions take the form

y(0) = ± 1

x − x0
+ u1 ±

(
β2

9
− u2

1

)
(x − x0) + u3(x − x0)

2 +

(
2α

15
± 4αx0u1

15
± 4u1u3

3

± χ

15
∓ β4

162
± 2β2u2

1

9
∓ 7u4

1

3

)
(x − x0)

3 + u5(x − x0)
4 + · · · . (5.27)

From equation (5.27) one can see that y(0) has four arbitrary constants x0, u1, u3 and u5.
Solutions y(0) corresponding to the third and fourth families of solutions can be written

in the form

y(0) = ± 2

x − x0
± β2

18
(x − x0) − αx0

20
(x − x0)

2

±
(

β4

648
− χ

30
∓ 2α

15

)
(x − x0)

3 + v5(x − x0)
4 + v6(x − x0)

5 + · · · . (5.28)
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From solution (5.28) one can see that y(0) has three arbitrary constants x0, v5 and v6.
However, taking this solution and perturbative solution (5.15) into account, we find by solving
similar equations (5.6)–(5.8) that y(x) has four arbitrary constants. We have obtained for
equation (5.24) that all three necessary conditions for the Painlevé test are satisfied.

5.4. Test for the system of equations (4.27) and (4.28)

Let us investigate the system of equations (4.27) and (4.28) in the Painlevé test.
Substituting formula (5.2) for y and u (we change y0 → u0 and p → q) into

leading members of the system of equations (4.27) and (4.28) (where we use δ → δ2/2)
we find four families of pairs of solutions with values (p, y0) = (−1, 1), (q, u0) =
(−2, 1/2); (p, y0) = (−1, −1), (q, u0) = (−2, 1/2); (p, y0) = (1, ν/δ), (q, u0) = (1, δ);
and (p, y0) = (1, −ν/δ), (q, u0) = (1, −δ).

Assuming

y = y0x
p + yjx

p+j , u = u0x
q + ujx

q+j (5.29)

in the system of equations (4.27) and (4.28) (where we change δ → δ2/2 for convenience of
calculations) and equating linear expressions with respect to yj and uj we have the following
system of equations for the first and second pair of families of solutions:

yj (j
2 − j) ± uj (4 − 4j − 2j 2) = 0 (5.30)

6yj ± uj (3j − 2 − j 2) = 0. (5.31)

The solutions of equations (5.30) and (5.31) at yj �= 0 and uj �= 0 take the form
j1 = −1, j2 = −2, j3 = 3 and j4 = 4.

Substituting (5.29) into leading members of the system of equations for the third and
fourth pair of families of solutions we find the multiple Fuchs indices j1,2 = −1, j3,4 = 1.

Solutions y(0) and u(0) for the first and second pair of families of equations can be written
in the form

y(0) = ± 1

x − x0
+

2

3
αx0 +

(
2

3
α ± 1

9
α2x2

0 ∓ 1

12
µ

)
(x − x0)

+ a3(x − x0)
2 + a4(x − x0)

3 + · · · (5.32)

u(0) = 1

2(x − x0)2
± αx0

3(x − x0)
+

α2x2
0

18
± α

6
+

µ

24

+

(
±α3x3

0

27
− 4α2x0

9
∓ αx0µ

36
± 3a3

)
(x − x0)

+

(
α4x4

0

162
± a4 ∓ α3x2

0

27
+

µ2

228
− α2x0µ

108
+

αx0a3

3
− α2

18

)
(x − x0)

3 + · · · .
(5.33)

The solutions (5.32) and (5.33) have three arbitrary constants x0, a3 and a4. However,
application of these solutions in the perturbative method leads to the four arbitrary constants.

Solutions y(0) and u(0) for the third and fourth families of solutions can be presented in
the form

y(0) = ±δ(x − x0) + p1(x − x0)
2 ± 1

3 (δµ + 2δα2x2
0 )(x − x0)

3 + · · · (5.34)

u(0) = ±ν(x − x0)

δ
+ a1(x − x0)

2 ± 1

3

(
νµ

δ
+ 4αδx0 +

2να2x2
0

δ

)
(x − x0)

3 + · · · . (5.35)

We have two arbitrary constants in every solution (5.34) and (5.35). However, considering
the next step in the perturbative method we obtain four arbitrary constants for y(x) and u(x).
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Therefore, the system of equations (4.27) and (4.28) passes the Painlevé test as other equations
studied in this section.

6. Conclusion

In this paper we have used the compatibility condition for five of six Painlevé equations to
find several new fourth-order ODEs that are analogies of the Painlevé equations. Most of
the fourth-order ODEs found are new. The Cauchy problems for these equations can be
solved by the inverse monodromy transform and we have given the isomonodromic linear
problems for several fourth-order analogies. Special solutions of new ODEs were discussed.
As a rule, the special solutions can be found using solutions of the usual Painlevé equations.
Consequently, we hope the above-mentioned equations have general solutions in the form of
new transcendental functions with respect to constants of integration.

Three new fourth-order ODEs (3.14), (3.28), (4.6) and the system of equa-
tions (4.27), (4.28) were studied in the Painlevé test. As expected these equations passed
the Painlevé test. The Cauchy problems for these equations can be solved by the inverse
monodromy transform taking into account the above-mentioned Lax pairs.

We call the equations presented analogies to the Painlevé equations taking into account
that these new ODEs are obtained as the compatibility conditions of the isomonodromic linear
problem of the Painlevé equations. We have also considered two types of potentials as it was
done in the case of the Painlevé equations. However, we do not think that our fourth-order
ODEs are similar to the Painlevé equations. Much more than that the equations found have
special solutions of some Painlevé equations and we think that some fourth-order ODEs can
be generalizations of the Painlevé equations. We hope this statement can be proved by means
of formula (3.1). One can see that assuming a0(x) = 0 and a2(x) �= 0 in this formula, we can
have one of the Painlevé equations but in the case of a0(x) �= 0 and a2(x) = 0 we have to
obtain another Painlevé equation. Therefore, we think that the fourth-order ODEs found are
generalizations of the Painlevé equations.
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